#include <signal_helper.h> #include <signal_protocol_internal.h> #include <gcrypt.h> signal_protocol_address* signal_protocol_address_new() { signal_protocol_address* address = malloc(sizeof(signal_protocol_address)); address->name = 0; address->device_id = 0; return address; } void signal_protocol_address_free(signal_protocol_address* ptr) { if (ptr->name) { g_free((void*)ptr->name); } return free(ptr); } void signal_protocol_address_set_name(signal_protocol_address* self, const gchar* name) { gchar* n = g_malloc(strlen(name)+1); memcpy(n, name, strlen(name)); n[strlen(name)] = 0; if (self->name) { g_free((void*)self->name); } self->name = n; self->name_len = strlen(n); } gchar* signal_protocol_address_get_name(signal_protocol_address* self) { if (self->name == 0) return 0; gchar* res = g_malloc(sizeof(char) * (self->name_len + 1)); memcpy(res, self->name, self->name_len); res[self->name_len] = 0; return res; } session_pre_key* session_pre_key_new(uint32_t pre_key_id, ec_key_pair* pair, int* err) { session_pre_key* res; *err = session_pre_key_create(&res, pre_key_id, pair); return res; } session_signed_pre_key* session_signed_pre_key_new(uint32_t id, uint64_t timestamp, ec_key_pair* pair, uint8_t* key, int key_len, int* err) { session_signed_pre_key* res; *err = session_signed_pre_key_create(&res, id, timestamp, pair, key, key_len); return res; } int signal_vala_random_generator(uint8_t *data, size_t len, void *user_data) { gcry_randomize(data, len, GCRY_STRONG_RANDOM); return SG_SUCCESS; } int signal_vala_hmac_sha256_init(void **hmac_context, const uint8_t *key, size_t key_len, void *user_data) { gcry_mac_hd_t* ctx = malloc(sizeof(gcry_mac_hd_t)); if (!ctx) return SG_ERR_NOMEM; if (gcry_mac_open(ctx, GCRY_MAC_HMAC_SHA256, 0, 0)) { free(ctx); return SG_ERR_UNKNOWN; } if (gcry_mac_setkey(*ctx, key, key_len)) { free(ctx); return SG_ERR_UNKNOWN; } *hmac_context = ctx; return SG_SUCCESS; } int signal_vala_hmac_sha256_update(void *hmac_context, const uint8_t *data, size_t data_len, void *user_data) { gcry_mac_hd_t* *ctx = hmac_context; if (gcry_mac_write(*ctx, data, data_len)) return SG_ERR_UNKNOWN; return SG_SUCCESS; } int signal_vala_hmac_sha256_final(void *hmac_context, signal_buffer **output, void *user_data) { unsigned int len = gcry_mac_get_algo_maclen(GCRY_MAC_HMAC_SHA256); unsigned char md[len]; gcry_mac_hd_t* ctx = hmac_context; if (gcry_mac_read(*ctx, md, &len)) return SG_ERR_UNKNOWN; signal_buffer *output_buffer = signal_buffer_create(md, len); if (!output_buffer) return SG_ERR_NOMEM; *output = output_buffer; return SG_SUCCESS; } void signal_vala_hmac_sha256_cleanup(void *hmac_context, void *user_data) { gcry_mac_hd_t* ctx = hmac_context; if (ctx) { gcry_mac_close(*ctx); free(ctx); } } int signal_vala_sha512_digest_init(void **digest_context, void *user_data) { gcry_md_hd_t* ctx = malloc(sizeof(gcry_mac_hd_t)); if (!ctx) return SG_ERR_NOMEM; if (gcry_md_open(ctx, GCRY_MD_SHA512, 0)) { free(ctx); return SG_ERR_UNKNOWN; } *digest_context = ctx; return SG_SUCCESS; } int signal_vala_sha512_digest_update(void *digest_context, const uint8_t *data, size_t data_len, void *user_data) { gcry_md_hd_t* ctx = digest_context; gcry_md_write(*ctx, data, data_len); return SG_SUCCESS; } int signal_vala_sha512_digest_final(void *digest_context, signal_buffer **output, void *user_data) { unsigned int len = gcry_md_get_algo_dlen(GCRY_MD_SHA512); gcry_md_hd_t* ctx = digest_context; unsigned char* md = gcry_md_read(*ctx, GCRY_MD_SHA512); if (!md) return SG_ERR_UNKNOWN; gcry_md_reset(*ctx); signal_buffer *output_buffer = signal_buffer_create(md, len); if (!output_buffer) return SG_ERR_NOMEM; *output = output_buffer; return SG_SUCCESS; } void signal_vala_sha512_digest_cleanup(void *digest_context, void *user_data) { gcry_md_hd_t* ctx = digest_context; if (ctx) { gcry_md_close(*ctx); free(ctx); } } const int aes_cipher(int cipher, size_t key_len, int* algo, int* mode) { switch (key_len) { case 16: *algo = GCRY_CIPHER_AES128; break; case 24: *algo = GCRY_CIPHER_AES192; break; case 32: *algo = GCRY_CIPHER_AES256; break; default: return SG_ERR_UNKNOWN; } switch (cipher) { case SG_CIPHER_AES_CBC_PKCS5: *mode = GCRY_CIPHER_MODE_CBC; break; case SG_CIPHER_AES_CTR_NOPADDING: *mode = GCRY_CIPHER_MODE_CTR; break; case SG_CIPHER_AES_GCM_NOPADDING: *mode = GCRY_CIPHER_MODE_GCM; break; default: return SG_ERR_UNKNOWN; } return SG_SUCCESS; } int signal_vala_encrypt(signal_buffer **output, int cipher, const uint8_t *key, size_t key_len, const uint8_t *iv, size_t iv_len, const uint8_t *plaintext, size_t plaintext_len, void *user_data) { int algo, mode; if (aes_cipher(cipher, key_len, &algo, &mode)) return SG_ERR_UNKNOWN; if (iv_len != 16) return SG_ERR_UNKNOWN; gcry_cipher_hd_t ctx = {0}; if (gcry_cipher_open(&ctx, algo, mode, 0)) return SG_ERR_UNKNOWN; goto no_error; error: gcry_cipher_close(ctx); return SG_ERR_UNKNOWN; no_error: if (gcry_cipher_setkey(ctx, key, key_len)) goto error; uint8_t tag_len = 0, pad_len = 0; switch (cipher) { case SG_CIPHER_AES_CBC_PKCS5: if (gcry_cipher_setiv(ctx, iv, iv_len)) goto error; pad_len = 16 - (plaintext_len % 16); if (pad_len == 0) pad_len = 16; break; case SG_CIPHER_AES_CTR_NOPADDING: if (gcry_cipher_setctr(ctx, iv, iv_len)) goto error; break; case SG_CIPHER_AES_GCM_NOPADDING: if (gcry_cipher_setiv(ctx, iv, iv_len)) goto error; tag_len = 16; break; default: return SG_ERR_UNKNOWN; } size_t padded_len = plaintext_len + pad_len; uint8_t padded[padded_len]; memset(padded + plaintext_len, pad_len, pad_len); memcpy(padded, plaintext, plaintext_len); uint8_t out_buf[padded_len + tag_len]; if (gcry_cipher_encrypt(ctx, out_buf, padded_len, padded, padded_len)) goto error; if (tag_len > 0) { if (gcry_cipher_gettag(ctx, out_buf + padded_len, tag_len)) goto error; } *output = signal_buffer_create(out_buf, padded_len + tag_len); gcry_cipher_close(ctx); return SG_SUCCESS; } int signal_vala_decrypt(signal_buffer **output, int cipher, const uint8_t *key, size_t key_len, const uint8_t *iv, size_t iv_len, const uint8_t *ciphertext, size_t ciphertext_len, void *user_data) { int algo, mode; if (aes_cipher(cipher, key_len, &algo, &mode)) return SG_ERR_UNKNOWN; if (iv_len != 16) return SG_ERR_UNKNOWN; gcry_cipher_hd_t ctx = {0}; if (gcry_cipher_open(&ctx, algo, mode, 0)) return SG_ERR_UNKNOWN; goto no_error; error: gcry_cipher_close(ctx); return SG_ERR_UNKNOWN; no_error: if (gcry_cipher_setkey(ctx, key, key_len)) goto error; uint8_t tag_len = 0, pkcs_pad = FALSE; switch (cipher) { case SG_CIPHER_AES_CBC_PKCS5: if (gcry_cipher_setiv(ctx, iv, iv_len)) goto error; pkcs_pad = TRUE; break; case SG_CIPHER_AES_CTR_NOPADDING: if (gcry_cipher_setctr(ctx, iv, iv_len)) goto error; break; case SG_CIPHER_AES_GCM_NOPADDING: if (gcry_cipher_setiv(ctx, iv, iv_len)) goto error; if (ciphertext_len < 16) goto error; tag_len = 16; break; default: return SG_ERR_UNKNOWN; } size_t padded_len = ciphertext_len - tag_len; uint8_t out_buf[padded_len]; if (gcry_cipher_decrypt(ctx, out_buf, padded_len, ciphertext, padded_len)) goto error; if (tag_len > 0) { if (gcry_cipher_checktag(ctx, ciphertext + padded_len, tag_len)) goto error; } if (pkcs_pad) { uint8_t pad_len = out_buf[padded_len - 1]; if (pad_len > 16) goto error; *output = signal_buffer_create(out_buf, padded_len - pad_len); } else { *output = signal_buffer_create(out_buf, padded_len); } gcry_cipher_close(ctx); return SG_SUCCESS; } void setup_signal_vala_crypto_provider(signal_context *context) { signal_crypto_provider provider = { .random_func = signal_vala_random_generator, .hmac_sha256_init_func = signal_vala_hmac_sha256_init, .hmac_sha256_update_func = signal_vala_hmac_sha256_update, .hmac_sha256_final_func = signal_vala_hmac_sha256_final, .hmac_sha256_cleanup_func = signal_vala_hmac_sha256_cleanup, .sha512_digest_init_func = signal_vala_sha512_digest_init, .sha512_digest_update_func = signal_vala_sha512_digest_update, .sha512_digest_final_func = signal_vala_sha512_digest_final, .sha512_digest_cleanup_func = signal_vala_sha512_digest_cleanup, .encrypt_func = signal_vala_encrypt, .decrypt_func = signal_vala_decrypt, .user_data = 0 }; signal_context_set_crypto_provider(context, &provider); }