#include #include #include #include #include #include #include signal_type_base* signal_type_ref_vapi(signal_type_base* instance) { if (instance->ref_count > 100 || instance->ref_count < 1) printf("REF %x -> %d\n", instance, instance->ref_count+1); signal_type_ref(instance); return instance; } signal_type_base* signal_type_unref_vapi(signal_type_base* instance) { if (instance->ref_count > 100 || instance->ref_count < 0) printf("UNREF %x -> %d\n", instance, instance->ref_count-1); signal_type_unref(instance); return 0; } signal_protocol_address* signal_protocol_address_new() { signal_protocol_address* address = malloc(sizeof(signal_protocol_address)); address->name = 0; address->device_id = 0; return address; } void signal_protocol_address_free(signal_protocol_address* ptr) { if (ptr->name) { g_free((void*)ptr->name); } return free(ptr); } void signal_protocol_address_set_name(signal_protocol_address* self, const gchar* name) { gchar* n = g_malloc(strlen(name)+1); memcpy(n, name, strlen(name)); n[strlen(name)] = 0; if (self->name) { g_free((void*)self->name); } self->name = n; self->name_len = strlen(n); } gchar* signal_protocol_address_get_name(signal_protocol_address* self) { if (self->name == 0) return 0; gchar* res = g_malloc(sizeof(char) * (self->name_len + 1)); memcpy(res, self->name, self->name_len); res[self->name_len] = 0; return res; } session_pre_key* session_pre_key_new(uint32_t pre_key_id, ec_key_pair* pair, int* err) { session_pre_key* res; *err = session_pre_key_create(&res, pre_key_id, pair); return res; } session_signed_pre_key* session_signed_pre_key_new(uint32_t id, uint64_t timestamp, ec_key_pair* pair, uint8_t* key, int key_len, int* err) { session_signed_pre_key* res; *err = session_signed_pre_key_create(&res, id, timestamp, pair, key, key_len); return res; } int signal_vala_random_generator(uint8_t *data, size_t len, void *user_data) { if(RAND_bytes(data, len)) { return 0; } else { return SG_ERR_UNKNOWN; } } int signal_vala_hmac_sha256_init(void **hmac_context, const uint8_t *key, size_t key_len, void *user_data) { #if OPENSSL_VERSION_NUMBER >= 0x10100001L HMAC_CTX *ctx = HMAC_CTX_new(); #else HMAC_CTX *ctx = malloc(sizeof(HMAC_CTX)); if(!ctx) { return SG_ERR_NOMEM; } HMAC_CTX_init(ctx); #endif *hmac_context = ctx; if(HMAC_Init_ex(ctx, key, key_len, EVP_sha256(), 0) != 1) { return SG_ERR_UNKNOWN; } return 0; } int signal_vala_hmac_sha256_update(void *hmac_context, const uint8_t *data, size_t data_len, void *user_data) { HMAC_CTX *ctx = hmac_context; int result = HMAC_Update(ctx, data, data_len); return (result == 1) ? 0 : -1; } int signal_vala_hmac_sha256_final(void *hmac_context, signal_buffer **output, void *user_data) { int result = 0; unsigned char md[EVP_MAX_MD_SIZE]; unsigned int len = 0; HMAC_CTX *ctx = hmac_context; if(HMAC_Final(ctx, md, &len) != 1) { return SG_ERR_UNKNOWN; } signal_buffer *output_buffer = signal_buffer_create(md, len); if(!output_buffer) { result = SG_ERR_NOMEM; goto complete; } *output = output_buffer; complete: return result; } void signal_vala_hmac_sha256_cleanup(void *hmac_context, void *user_data) { if(hmac_context) { HMAC_CTX *ctx = hmac_context; #if OPENSSL_VERSION_NUMBER >= 0x10100001L HMAC_CTX_free(ctx); #else HMAC_CTX_cleanup(ctx); free(ctx); #endif } } const EVP_CIPHER *aes_cipher(int cipher, size_t key_len) { if(cipher == SG_CIPHER_AES_CBC_PKCS5) { if(key_len == 16) { return EVP_aes_128_cbc(); } else if(key_len == 24) { return EVP_aes_192_cbc(); } else if(key_len == 32) { return EVP_aes_256_cbc(); } } else if(cipher == SG_CIPHER_AES_CTR_NOPADDING) { if(key_len == 16) { return EVP_aes_128_ctr(); } else if(key_len == 24) { return EVP_aes_192_ctr(); } else if(key_len == 32) { return EVP_aes_256_ctr(); } } else if (cipher == SG_CIPHER_AES_GCM_NOPADDING) { if(key_len == 16) { return EVP_aes_128_gcm(); } else if(key_len == 24) { return EVP_aes_192_gcm(); } else if(key_len == 32) { return EVP_aes_256_gcm(); } } return 0; } int signal_vala_sha512_digest_init(void **digest_context, void *user_data) { int result = 0; EVP_MD_CTX *ctx; ctx = EVP_MD_CTX_create(); if(!ctx) { result = SG_ERR_NOMEM; goto complete; } result = EVP_DigestInit_ex(ctx, EVP_sha512(), 0); if(result == 1) { result = SG_SUCCESS; } else { result = SG_ERR_UNKNOWN; } complete: if(result < 0) { if(ctx) { EVP_MD_CTX_destroy(ctx); } } else { *digest_context = ctx; } return result; } int signal_vala_sha512_digest_update(void *digest_context, const uint8_t *data, size_t data_len, void *user_data) { EVP_MD_CTX *ctx = digest_context; int result = EVP_DigestUpdate(ctx, data, data_len); return (result == 1) ? SG_SUCCESS : SG_ERR_UNKNOWN; } int signal_vala_sha512_digest_final(void *digest_context, signal_buffer **output, void *user_data) { int result = 0; unsigned char md[EVP_MAX_MD_SIZE]; unsigned int len = 0; EVP_MD_CTX *ctx = digest_context; result = EVP_DigestFinal_ex(ctx, md, &len); if(result == 1) { result = SG_SUCCESS; } else { result = SG_ERR_UNKNOWN; goto complete; } result = EVP_DigestInit_ex(ctx, EVP_sha512(), 0); if(result == 1) { result = SG_SUCCESS; } else { result = SG_ERR_UNKNOWN; goto complete; } signal_buffer *output_buffer = signal_buffer_create(md, len); if(!output_buffer) { result = SG_ERR_NOMEM; goto complete; } *output = output_buffer; complete: return result; } void signal_vala_sha512_digest_cleanup(void *digest_context, void *user_data) { EVP_MD_CTX *ctx = digest_context; EVP_MD_CTX_destroy(ctx); } int signal_vala_encrypt(signal_buffer **output, int cipher, const uint8_t *key, size_t key_len, const uint8_t *iv, size_t iv_len, const uint8_t *plaintext, size_t plaintext_len, void *user_data) { int result = 0; uint8_t *out_buf = 0; const EVP_CIPHER *evp_cipher = aes_cipher(cipher, key_len); if(!evp_cipher) { fprintf(stderr, "invalid AES mode or key size: %zu\n", key_len); return SG_ERR_UNKNOWN; } if(iv_len != 16) { fprintf(stderr, "invalid AES IV size: %zu\n", iv_len); return SG_ERR_UNKNOWN; } if(plaintext_len > INT_MAX - EVP_CIPHER_block_size(evp_cipher)) { fprintf(stderr, "invalid plaintext length: %zu\n", plaintext_len); return SG_ERR_UNKNOWN; } EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); int buf_extra = 0; if(cipher == SG_CIPHER_AES_GCM_NOPADDING) { // In GCM mode we use the last 16 bytes as auth tag buf_extra += 16; result = EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, NULL); if(!result) { fprintf(stderr, "cannot initialize cipher\n"); result = SG_ERR_UNKNOWN; goto complete; } result = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 16, NULL); if(!result) { fprintf(stderr, "cannot set iv size\n"); result = SG_ERR_UNKNOWN; goto complete; } result = EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv); if(!result) { fprintf(stderr, "cannot set key/iv\n"); result = SG_ERR_UNKNOWN; goto complete; } } else { result = EVP_EncryptInit_ex(ctx, evp_cipher, 0, key, iv); if(!result) { fprintf(stderr, "cannot initialize cipher\n"); result = SG_ERR_UNKNOWN; goto complete; } } if(cipher == SG_CIPHER_AES_CTR_NOPADDING || cipher == SG_CIPHER_AES_GCM_NOPADDING) { result = EVP_CIPHER_CTX_set_padding(ctx, 0); if(!result) { fprintf(stderr, "cannot set padding\n"); result = SG_ERR_UNKNOWN; goto complete; } } out_buf = malloc(sizeof(uint8_t) * (plaintext_len + EVP_CIPHER_block_size(evp_cipher) + buf_extra)); if(!out_buf) { fprintf(stderr, "cannot allocate output buffer\n"); result = SG_ERR_NOMEM; goto complete; } int out_len = 0; result = EVP_EncryptUpdate(ctx, out_buf, &out_len, plaintext, plaintext_len); if(!result) { fprintf(stderr, "cannot encrypt plaintext\n"); result = SG_ERR_UNKNOWN; goto complete; } int final_len = 0; result = EVP_EncryptFinal_ex(ctx, out_buf + out_len, &final_len); if(!result) { fprintf(stderr, "cannot finish encrypting plaintext\n"); result = SG_ERR_UNKNOWN; goto complete; } if(cipher == SG_CIPHER_AES_GCM_NOPADDING) { result = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, out_buf + (out_len + final_len)); if(!result) { fprintf(stderr, "cannot get tag\n"); result = SG_ERR_UNKNOWN; goto complete; } } *output = signal_buffer_create(out_buf, out_len + final_len + buf_extra); complete: EVP_CIPHER_CTX_free(ctx); if(out_buf) { free(out_buf); } return result; } int signal_vala_decrypt(signal_buffer **output, int cipher, const uint8_t *key, size_t key_len, const uint8_t *iv, size_t iv_len, const uint8_t *ciphertext, size_t ciphertext_len, void *user_data) { int result = 0; uint8_t *out_buf = 0; const EVP_CIPHER *evp_cipher = aes_cipher(cipher, key_len); if(!evp_cipher) { fprintf(stderr, "invalid AES mode or key size: %zu\n", key_len); return SG_ERR_INVAL; } if(iv_len != 16) { fprintf(stderr, "invalid AES IV size: %zu\n", iv_len); return SG_ERR_INVAL; } if(ciphertext_len > INT_MAX - EVP_CIPHER_block_size(evp_cipher)) { fprintf(stderr, "invalid ciphertext length: %zu\n", ciphertext_len); return SG_ERR_UNKNOWN; } EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if(cipher == SG_CIPHER_AES_GCM_NOPADDING) { // In GCM mode we use the last 16 bytes as auth tag ciphertext_len -= 16; result = EVP_DecryptInit_ex(ctx, evp_cipher, NULL, NULL, NULL); if(!result) { fprintf(stderr, "cannot initialize cipher\n"); result = SG_ERR_UNKNOWN; goto complete; } result = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, 16, NULL); if(!result) { fprintf(stderr, "cannot set iv size\n"); result = SG_ERR_UNKNOWN; goto complete; } result = EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv); if(!result) { fprintf(stderr, "cannot set key/iv\n"); result = SG_ERR_UNKNOWN; goto complete; } } else { result = EVP_DecryptInit_ex(ctx, evp_cipher, 0, key, iv); if(!result) { fprintf(stderr, "cannot initialize cipher\n"); result = SG_ERR_UNKNOWN; goto complete; } } if(cipher == SG_CIPHER_AES_CTR_NOPADDING || cipher == SG_CIPHER_AES_GCM_NOPADDING) { result = EVP_CIPHER_CTX_set_padding(ctx, 0); if(!result) { fprintf(stderr, "cannot set padding\n"); result = SG_ERR_UNKNOWN; goto complete; } } out_buf = malloc(sizeof(uint8_t) * (ciphertext_len + EVP_CIPHER_block_size(evp_cipher))); if(!out_buf) { fprintf(stderr, "cannot allocate output buffer\n"); result = SG_ERR_UNKNOWN; goto complete; } int out_len = 0; result = EVP_DecryptUpdate(ctx, out_buf, &out_len, ciphertext, ciphertext_len); if(!result) { fprintf(stderr, "cannot decrypt ciphertext\n"); result = SG_ERR_UNKNOWN; goto complete; } if(cipher == SG_CIPHER_AES_GCM_NOPADDING) { result = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, (uint8_t*)ciphertext + ciphertext_len); if(!result) { fprintf(stderr, "cannot set tag\n"); result = SG_ERR_UNKNOWN; goto complete; } } int final_len = 0; result = EVP_DecryptFinal_ex(ctx, out_buf + out_len, &final_len); if(!result) { fprintf(stderr, "cannot finish decrypting ciphertexts\n"); result = SG_ERR_UNKNOWN; goto complete; } *output = signal_buffer_create(out_buf, out_len + final_len); complete: EVP_CIPHER_CTX_free(ctx); if(out_buf) { free(out_buf); } return result; } void setup_signal_vala_crypto_provider(signal_context *context) { signal_crypto_provider provider = { .random_func = signal_vala_random_generator, .hmac_sha256_init_func = signal_vala_hmac_sha256_init, .hmac_sha256_update_func = signal_vala_hmac_sha256_update, .hmac_sha256_final_func = signal_vala_hmac_sha256_final, .hmac_sha256_cleanup_func = signal_vala_hmac_sha256_cleanup, .sha512_digest_init_func = signal_vala_sha512_digest_init, .sha512_digest_update_func = signal_vala_sha512_digest_update, .sha512_digest_final_func = signal_vala_sha512_digest_final, .sha512_digest_cleanup_func = signal_vala_sha512_digest_cleanup, .encrypt_func = signal_vala_encrypt, .decrypt_func = signal_vala_decrypt, .user_data = 0 }; signal_context_set_crypto_provider(context, &provider); }